Your Location

The water quality monitoring results are presented below.

The water sources serving this address are:

Source Name	Origin of Water	Treatment	Region
a) Punaluu Wells II	Groundwater	Chlorination	2
b) Waihee Tunnel	Groundwater	Chlorination	2
c) Waimanalo Tunnels I-IV	Groundwater	Chlorination	2
d) Waimanalo Well II	Groundwater	Chlorination	2

Source Water Monitoring

The substances detected in these sources are shown below. If a substance is not shown, then it was not detected. **Regulated Contaminants (2)**

	Sample		Highest	Range		Range		MCL	MCLG	
Contaminant	Year	Unit	Average	Minimum	Maximum	(Allowed)	(Goal)	Found in Sources		
Barium	2021	ppm	0.006	0.002	0.006	2.000	2.000	a,b,c		
Beta/Photon Emitters	2021	pci/l	3.000	3.000	3.000	50.000	0.000	а		
Chromium	2021	ppb	1.600	ND	1.800	100.000	100.000	All Sources		
Nitrate	2021	ppm	0.410	0.180	0.410	10.000	10.000	b,c,d		

Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as

Definitions: MCL

	feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCGLs allows for a margin of safety.
GAC	Granular Activated Carbon Filtration
Health Advisory	An estimate of acceptable drinking water levels for a chemical substance based on health effects information. Health advisory is not a legally enforceable standard.
CFU/100ml	Colony forming units per 100 milliliter
mrem/yr	Millirems Per Year (A measure of Radiation)
pCi/L	Picocuries Per Liter (A measure of Radioactivity)
ppb	Parts per billion or Micrograms per Liter
ppm	Parts per million or Milligrams per liter
ppt	Parts per Trillion or Nanograms per liter
NQ	Not Quantifiable (<means "less="" td="" than")<=""></means>
NYA	Not Yet Applicable
N/A	Not Applicable
ND	Not Detected
*	EPA considers 50 pCi/L to be the level of concern for beta particles
(1)	Analysis by the State of Hawaii Department of Health
(2)	Analysis by the Honolulu Board Of Water Supply. Questions, call 748-5370.
LRAA	Locational running annual average is the average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.
MDDI	Maximum sacidual disinfastant laval. The highest laval of a disinfastant allowed in dvinking water

MRDL Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water.

MRDLG Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health.

Unregulated Contaminants (Do not have designated maximum limits but require monitoring)	
---	--

Tested	Sample		1		1																					Highest	Range		Health	
Ву	Year	Unit	Average	Minimum	Maximum	Advisory	Found in Sources																							
(2)	2021	ppb	34.000	17.000	34.000	210.000	a,b,d																							
(2)	2021	ppm	190.000	16.000	190.000	250 **	All Sources																							
(2)	2021	ppb	2.000	1.300	2.000	13.000	All Sources																							
(2)	2021	ppm	34.000	13.000	34.000	60.000	All Sources																							
(2)	2021	ppb	280.000	50.000	280.000	4000.000	All Sources																							
(2)	2021	ppm	19.000	2.500	19.000	250 **	All Sources																							
(2)	2021	ppb	22.000	5.700	22.000	21.000	All Sources																							
	By (2) (2) (2) (2) (2) (2) (2)	By Year (2) 2021 (2) 2021 (2) 2021 (2) 2021 (2) 2021 (2) 2021 (2) 2021 (2) 2021 (2) 2021 (2) 2021	By Year Unit (2) 2021 ppb (2) 2021 ppm (2) 2021 ppb (2) 2021 ppb (2) 2021 ppb (2) 2021 ppm (2) 2021 ppm (2) 2021 ppb (2) 2021 ppb (2) 2021 ppb (2) 2021 ppm	By Year Unit Average (2) 2021 ppb 34.000 (2) 2021 ppm 190.000 (2) 2021 ppb 2.000 (2) 2021 ppb 34.000 (2) 2021 ppm 34.000 (2) 2021 ppm 34.000 (2) 2021 ppm 19.000 (2) 2021 ppb 19.000	By Year Unit Average Minimum (2) 2021 ppb 34.000 17.000 (2) 2021 ppm 190.000 16.000 (2) 2021 ppb 2.000 1.3000 (2) 2021 ppm 34.000 13.000 (2) 2021 ppm 34.000 13.000 (2) 2021 ppb 280.000 50.000 (2) 2021 ppm 19.000 2.500	By Year Unit Average Minimum Maximum (2) 2021 ppb 34.000 17.000 34.000 (2) 2021 ppm 190.000 16.000 190.000 (2) 2021 ppm 2.000 1.300 2.000 (2) 2021 ppb 2.000 1.300 2.000 (2) 2021 ppm 34.000 13.000 34.000 (2) 2021 ppb 280.000 50.000 280.000 (2) 2021 ppm 19.000 2.500 19.000	By Year Unit Average Minimum Maximum Advisory (2) 2021 ppb 34.000 17.000 34.000 210.000 (2) 2021 ppm 190.000 16.000 190.000 250 ** (2) 2021 ppb 2.000 1.300 2.000 13.000 (2) 2021 ppm 34.000 13.000 34.000 60.000 (2) 2021 ppm 34.000 13.000 34.000 60.000 (2) 2021 ppm 34.000 13.000 34.000 60.000 (2) 2021 ppb 280.000 50.000 280.000 4000.000 (2) 2021 ppm 19.000 2.500 19.000 250 **																							

**Secondary Maximum Containment Levels (SMCLs) are standards established as guidelines to assist public water systems in managing the aesthetics quality (taste, odor, and color) of drinking water. EPA does not enforce SMCLs.

Distribution System Monitoring

Disinfection By-Products (2)

Custom Nama	Ornteminent	Unit	Min	Mari	Highest	MCL	
System Name	Contaminant	Unit	IVIIN	Max	LRAA	(Allowed)	MCLG (Goal)
Honolulu-Windward-Pearl Harbor	Total Trihalomethanes	ppb	0.00	16.00	9.00	80	None
	Haloacetic Acids (HAA5)	ppb	0.00	15.00	3.88	60	None
						MCL	
		Unit	Min	Max	Average	(Allowed)	MCLG (Goal)
	Haloacetic Acids (HAA6BR)	ppb	0.00	1.50	0.82	NYA	NYA
	Haloacetic Acids (HAA9)	ppb	0.00	1.50	0.82	NYA	NYA

Microbial Contaminants (2)

System Name	Contaminant	Number of positive E. coli samples found	Violation (Yes/No)	Number of assessments required to perform	Major sources in drinking water	
Honolulu-Windward-Pearl Harbor	E. Coli	0	No	0	Human and animal fecal waste	

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Residual Chlorine (2)

	Sample		Lowest Monthly	Highest Monthly	Running Annual		
System Name	Year	Unit	Average	Average	Average	MRDL	MRDLG
Honolulu-Windward-Pearl Harbor	2021	ppm	0.28	0.31	0.30	4	4

Lead/Copper Testing (2)

Contaminant	Sample Year	Unit	90th Percentile Reading	Action Level	# Samples Above Action Level
Lead	2021	ppb	<1.000	15.000	0
Copper	2021	ppm	0.039	1.300	0

No violations found for calendar year 2021